"DFO/COMDA developments in preparation for GOAPP: Who's doing what?"

D. Wright, Y. Lu, Z. Wang, J. Su, M. Dunphy BIO/OCS

Also including a special cameo appearance by Dave Brickman

Funded by the Canadian Foundation for Climate and Atmospheric Sciences Common Domains All grids will be consistent with the Mercator ORCA025 model

<u>Global</u> (1[°], 1/4[°])
Arctic (1[°], 1/4[°])
<u>North Atlantic</u> (1/4[°])
NW Atlantic (1/4[°])
<u>EAST</u> (1/12[°])
<u>North Pacific</u> (1[°], 1/4[°])
<u>NE Pacific (1/12[°])</u>
46 vertical levels

For coarse resolution (1²) simulations we'll use the UK modification. Why?

<u>1º Global and Arctic configurations</u>

Required for reanalysis work, climate studies and ensemble prediction studies

Surface forcing

Climatological forcing so far
Will use same fields as European groups for comparability

Sea ice

LIM (LLN ice model) routinely available in NEMO/OPA
Draft manuscript on sea ice sensitivities

Global Model (Ice Thickness)

0

Ice Thickness

Ice Thickness

Global Model (Ice Concentration)

Ice Concentration

Ice Concentration

Spectral Nudging in a 1 degree global model

Preliminary results are encouraging

Effects on Sea Level (and Major Currents)

Annual Mean SSH for the 5th year- No SN

Hints about Effects on SST (Both runs use climatological forcing and surface restoring but second run has spectral nudging at all levels)

North Atlantic configuration

- Needed for DA & eddy-admitting reanalysis work (also for CONCEPTS)
- 1/4 degree formulation implemented and tested
- Results comparable to earlier POP model results

Spectral Nudging

- Tested in ¼ deg NA model
- Results comparable to POP experience

> AGRIF

- 1/12^o EAST in 1/4^o NWA common area tested
- Will hopefully be implemented in C-NOOFS system soon

Optimized parameters for ¼ degree resolution

- Dependence on mixing parameters crudely mapped out
- Need longer runs to improve reliability
- Put on hold for now
 - -- reproducibility problems resolved, but require lots of CPU time
 - -- could accept Mercator/DRAKKAR choices

Shelf Model: Tides

M₂ co-amplitude

M₂ co-phase

Shelf Model: Impacts of Tides on SST

Without tides

With tides

20

15

10

Next Priorities

> 1º Global Parameterizations

 Examining the possibility of reducing the need for spectral nudging by using a combination of Neptune (BT) and Gent-McWilliams (BC)

> 1º Global Simulations

 Examine effects of different bias reduction approaches (prognostic, nudging, neptune, Gent-McWilliams)

> 1º Arctic Simulations (CONCEPTS project)

- Focus on sea ice in ocean only models
- Mixing sensitivity studies
- Comparison with 1/4-deg Mercator results

<u>Next Priorities (cont'd)</u>

>1/4º NA and NP reanalysis

Compare and coordinate with Mercator/DRAKKAR
Validation against observations
Experiment with old and new DA methods
Effects of embedded 1/12^o EAST domain

Coupling with GEM (depends on EC)

The End

Thanks for listening

Dan

- Model set-up (keys, parameters, forcing)
- Diagnoses and correction of model problems
 Model tests
- Model-data intercomparison metrics
- Examining of model predictive skill
- Spectral nudging, Neptune, GM
- Help implement new DA methodologies
- Interpretation of model results

<u>Youyu</u>

Model set-up

- Forcing fields (surface and OBC fields)
- Identification of problems and solutions
- OBCs and tides
- Metrics for model-data intercomparisons
- Sea-ice model intercomparison
- Collaborate on interpretation of model results

<u>Zeliang</u>

 Code master Model setups (grids, forcing, etc) Model runs Sensitivity tests Model-data intercomparisons Interpretation of model results

Jie (Arctic)

- Model setup and runs
- Model-data intercomparisons
- Sensitivity experiments
- Open boundary conditions and tides

<u> /like</u>

- Lead on reproducibility issues
- Set up of benchmark tests
- Agrif work for embedded EAST domain
- Optimization of ¹/₄ deg model parameters
- General assistance with coding